Colorado State University – Pueblo Academic Program Assessment Report for AY 2016-2017

Due: June 1, 2017

Program:____Chemistry_____

Date: __5/24/17_____

Completed by:____Chad Kinney_____

Assessment contributors (other faculty involved in this program's assessment): __All Department faculty were given the opportunity to review and provide feedback_____

Please describe the 2015-2016 assessment activities for the program in Part I. Use Column H to describe improvements planned for 2016-2017 based on the assessment process. In Part II, please describe activities engaged in during 2015-2016 designed to close-the-loop (improve the program) based on assessment activities and the information gathered in 2014-2015. Thank you.

I. Program student learning outcomes (SLOs) assessed in this cycle, processes, results, and recommendations.

A. Which of the	B. When	C. What	D. Who was	E. What is	F. What were the	G. What were the	H. What
program SLOs	was this	method was	assessed?	the	results of the	department's	changes/improvements
were assessed	SLO last	used for	Please fully	expected	assessment?	conclusions about	to the <u>program</u> are
during this	assessed?	assessing the	describe the	achievement		student	planned based on this
cycle? Please	Please	SLO? Please	student	level and		performance?	assessment?
include the	indicate	include a copy	group(s) and	how many			
outcome(s)	the	of any rubrics	the number	or what			
verbatim from	semester	used in the	of students	proportion			
the assessment	and year.	assessment	or artifacts	of students			
plan.		process.	involved.	should be at			
				it?			
1. Students will exhibit a comprehensive knowledge of the fundamental theories and concepts necessary in the chemical sciences.	Data are collected at the end of every semester and assessed annually. The SLO was last assessed in Spring 2016.	The ACS Exams Institute provides standardized exams that cover all the major sub- disciplines within chemistry. The chemistry program uses these exams where appropriate (general, organic, physical, analytical, inorganic, and biochemistry). The Major Field	All students taking core chemistry courses will take the ACS exams (403 ACS exam scores were reported during the 16-17 AY. This is does not represent 403 unique students since many students take multiple	Faculty expect that students on average will score at or bove the 50 percentile on both the ACS and MFAT standardized exams.	Student results on ACS exams, where comparison to national data is available, was general abovethe 50 th percentile for course averages. This is true of all upper division course that are primarily made up of Chemistry Majors. In most cases where the class average percentile is below the 50 th percentile the class average was close to the 50 th percentile. (i.e. 40 th percentile and up). The one exception to this was one of the CHEM 121 sections offered this AY. In	Based on the expected knowledge of chemistry established by the American Chemical Society as well as tested by the MFAT exam, stundents at CSU-Pueblo are generally performing at or above the national average among their peers at other institutions of higher education. Exceptions to this are generally	In general, areas for improvement in SLO performance continues to be with students in early chemistry courses, especially General Chemistry. This was acknowledged in the recent grant application to the U.S. Dept. of Educatin grant that was awarded and supports the CBASE Program. The research program of the CBASE Program is curricular development and piloting of smaller studio style general chemistry coruses,

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 1 of 16

2. Students will	Data are	The ACS Exams	All students	Faculty expect	Student results on ACS exams,	Based on the expected	Similar conclusions as SLO 1
exhibit the	collected at	Institute provides	taking core	that students	where comparison to	knowledge of chemistry	stated above.
mathematical and	the end of	standardized	chemistry	on average will	national data is available, was	established by the	
problem-solving	every	exams that cover	courses will take	score at or	general abovethe 50 th	American Chemical	
skills necessary in	semester	all the major sub-	the ACS exams	th	percentile for course	Society as well as	
the chemical	and	disciplines within	(403 ACS exam	bove the 50	averages. This is true of all upper division course that are	tested by the MFAT	
sciences.	assessed	chemistry. The	scores were	percentile on	primarily made up of	, exam, stundents at	
	annually.	, chemistry program	reported during	both the ACS	Chemistry Majors. In most	CSU-Pueblo are	
	The SLO was	uses these exams	the 16-17 AY.	and MFAT	cases where the class average	generally performing at	
	last assessed	where appropriate	This is does not	standardized	percentile is below the 50 th	or above the national	
	in Spring	(general, organic,	represent 403	exams.	percentile the class average	average among their	
	2016	physical,	unique students		was close to the 50 th	peers at other	
		analytical,	since many		percentile. (i.e. 40 th percentile	institutions of higher	
		inorganic, and	students take		and up). The one exception to this was one of the CHEM 121	education. Exceptions	
		biochemistry). The	multiple		sections offered this AY. In	to this are generally	
		Major Field	chemistry		fact all but one section of	limited trailer sections	
		Achievement Test	, courses, and		general chemistrh (121 and	for those courses that	
		(MFAT) is also	therefore, take		122) fell below the 50 $^{ m th}$	have them. The	
		required of all	multiple exams		percentile on the ACS exam	majority of students	
		graduating seniors	in an given AY).		used to assess students.	completing a degree in	
		and is used to	Twelve students		General chemistry continues to be a struggle for many	chemistry at CSU-	
		assess student	completed the		studetns, many of which	Pueblo demonstrate an	
		knowledge in	MFAT exams		come in unpreapared for the	knowledge of chemistry	
		chemistry.	during the 16-17		rigors of science courses at	that exceeds that of	
			AY.		the unviersity level. The lower	most student	
					ACS exam scores in general	completing a chemistry	
					chemistry is mirrored by a	degree at other	
					high DWF rate.	institutions using the	
					The MFAT exam scores again	MFAT exam as an	
					demonstrate favorable	assessment tool.	
					performance among senior		
					students with the average		
					scores in all chemistry sub-		
					disciplines tested being well		
					above the 50 th percentile and the overall combined average		
					on the exams in the 62 nd		
					percentile. Furthermore, 2 of		
					the 10 students tested at the		
					94 th percentile or greater		
					overall and 5 of the 12 tested		
					at the 75 th percentile or		
					above. 8 of the 12 students		
					tested at the 50 th percentile or greater overall.		
					greater overall. Summary of current AY and		
					historic ACS and MFAT exam		
					results are included with this		

					assessment report.		
3. Students will be able to research, review and understand the current chemical literature and be able to critically evaluate, write about and professionally present such material.	Data are collected at the end of every semester and assessed annually. The SLO was last assessed in Spring 2016	Although aspects of Learning Outcome Three are incorporated into much of the curriculum, assessment of the third learning outcome takes place during the required senior seminar course, Chem 493 and in other higher level courses. All faculty are expected to attend the student's senior seminar and an evaluation tool is distributed to every member present. Evaluation tool included.	Devlopment of the skills required for this SLO occur throughout the curriculum. However, final assessment occurs as part of the CHEM 493- Senior Seminar Course (12 students 16-17 AY).	Faculty evaluations of the senior seminar are pooled and included in the student's grade for the course which is compiled by the instructor of record. Evaluations are given on a 100- point scale and faculty expect students to achieve an average of 70 or better for satisfactory performance.	Ten of the 12 students assessed through the CHEM 493 course were at the 70% mark or better. Of the two student who did not meet this expectation one withdrew from the course and the other received an "IN".	Generally speaking students have developed the needed skills throughout the chemistry curriculum to meet this SLO. This is demonstrated by performance at or above the expected level of achievement in CHEM 493 as assessed by the department faculty as a whole.	Given the performance in meeting this SLO the aspects of the chemistry curriculum designed to meet it appear appropriate at this time. No changes are deamed necessary at this time.

Comments:

II. Follow-up (closing the loop) on results and activities from previous assessment cycles. In this section, please describe actions taken during this cycle that were based on, or implemented to address, the results of assessment from previous cycles.

SLO 1 and 2Data are collected at the end of every semester. The SLO was last assessed in Spring 2016.Given the consistently el DWF rate in general cher courses the proposed ch to assess student success integrated lecture and la a studio format with a re number of students. Pre- success with smaller sect general chemistry course SAFE Course approach w	velevated Given that the studio approach to These changes will be implemented for the first
to summer offerings. Thi represent the first attem assessing smaller section use of a studio format in Chemistry Department d regular academic year. T approach was proposed the assessment process l	hemistry change will be change will be additional time and effort on the part of the instructor as well as necessitated small class size since the course will have to be offered in a lab setting, grant funding was required to test this approach. Two external grant applications newas limited This will empt at in one was funded through the U.S. ions and the the grant funded education the thuring the research, a simultaneous r. The studiotime beginning Fall 2017 for the studio approach and Spring 2018 for the flipped classroom approach. Data will be forthcoming.time beginning Fall 2017 for the studio approach urses using the

Comments:

Cominen Accessment & Comment

Seminar Score

Seminar Assessment & Comments	Abstract (%)
CHEM 493	100 point scale
Student Presenter	
Topic Date	-
The objective of the 50 minute talk is to illustrate the student's ability to coherently present information of	a specific nature.
Topic: (10 pts)	
Appropriateness of topic: <i>narrow enough</i> to include specific material while having <i>breadth of interest</i> ? Is it sufficiently <i>chemical in nature</i> Is it of <i>general interest</i> ? Is it timely?	?
Content: (35 pts)	
Is there <i>sufficient chemistry</i> in the presentation? Is the material presented <i>relevant to the topic</i> , correct, well-documented and current?	is it <i>clearly</i> and <i>logically</i> presented?
Organization: (20 pts) Does the <i>introduction</i> provide a <i>good overview</i> ? Does each <i>topic flow naturally</i> form the previous one? Does the presentation <i>"tell a store</i> "	ry"? Is the material appropriate for the
intended audience?	
Presentation: (20 pts) Does the presenter maintain good eye contact, and use appropriate strength of voice, while engaging listeners?	
(40 min) Start time Stop time	
Graphics, Diagrams, Figures: (10 pts)	
Do the visual aids <i>supplement the presentation</i> or are they superfluous? Do visual aids fit <i>logically</i> into presentation? Are they <i>discussed</i>	in detail? Are they easy to read and follow?
Use of Power Point: (5 pts)	

How well was the visual presentation put together? (general appearance, clarity, and legibility of slides; effective use of Power Point).

General Impressions:

American Chemical Society Standardized Final Examination Data Academic Year 2004- present

ACS Final	Semester			Raw Score Avera					centile erage	Percentil e	Differenc e
ACSTINA	Jemester		Std.			Std.			eraye	e	6
(Exam name & year)	Given	U.S.	Dev.	N =	-P	Dev.	N =	U.S.	CSU-P	Raw	Weighted
				ral Chemistry Exams		-					3
				1st Term (CHEM							
				121)							
1st term (2000) DL	Su 05	39.6	11		41.3	11.3	16	51	56	5	80
1st term (2000) LW	Fall 04	39.6	11		44	14	58	51	65	14	812
1st term (1997)LW	Fall 05	39	11	2000	39	12	63	51	48	-3	-189
1st term (1997)LW	Fall 06	39	11	2000	42	11	38	51	57	6	228
1st term (2000)LW	Fall 07	40	11		39	12	73	48	48	0	0
1st term (2005)LW	Fall 08	40	12	4524	38	10	56	48	45	-3	-168
1st term (2000)RF	F08	39.6	11		33.8	9.8	15	51	33	-18	-270
1st term (2000) DL	Su 07	39.6	11		39.1	10.4	16	51	49	-2	-32
1st term (2000) DL	Su 08	39.6	11		42.9	13.2	19	51	61	10	190
1st term (2000) DL	Su 09	39.6	11		45.9	15.1	10	51	70	19	190
1st term (2005) CK	Spring	40.3	40.00	4=0.4	32.0						
	2010 Continue	5	12.26	4524	5	10.91	65	50	28	-22	-1430
1st term (2009) KP	Spring 2010	37.1	11.4	3827	38.2	11.6	74	51	54	3	222
1st term (2009) RF	F10	37.1	11.4	3827	38.2	12.2	33	51	54 54	3	99
1st term (2005) DL	FIU	40.3	11.4	3027	45.0	12.2	33	51	54	5	99
	Su 10	-0.0	12.26	4524	8	11.09	22	50	63	13	286
1st term (2009) DD		37.1			-						
· · · ·	Su 11	3	11.39	3827	36.8	10.3	26	51	50	-1	-26
1st term (2009) CC		37.1									
	F11	3	11.39	3827	33.9	11.2	78	51	41.8	-9.2	-717.6
1st term (2009) CC	0.10	37.1	44.00	0007	04.0	40.7	00	54	40.0	0.4	700
1 of form (2000) DE	Sp12	3 37.1	11.39	3827	34.3	10.7	90	51	42.9	-8.1	-729
1st term (2009) RF	F12	37.1	11.39	3827	37.1	9.1	71	51	50.5	-0.5	-35.5
2nd term (2009) CC	1 12	37.1	11.55	5021	57.1	5.1	1	51	50.5	-0.5	-00.0
	Sp 14	3	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
General Chemistry I 2009 (rev. 2011)		37.1									
CC	F2012	3	11.39	3827	36	7.75	17	50	48	-2	-34
General Chemistry I 2009 (rev. 2011)		37.1			33.9						
	S2013	3	11.39	3827	2	9	83	50	42	-8	-664

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 7 of 16

Gen. Chem. First Term 2009		37.1									
Gen. Chem. First Term 2009	Fall 2013	37.1	11.39	3827	34.7	9.7	81	51	43.4	-7.6	-615.6
1st term (2009) CC	1 all 2013	37.1	11.55	5027	54.7	5.7	01	51	-0	-7.0	-015.0
	Sp 14	3	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
1st Term Form 2009 Rev 2011 CC	- 1	37.1			38.5						
	Fall 2014	3	11.39	3827	4	12.06	34	51.3	56	4.7	159.8
First Term General Chemistry KP		40.3			44.0						
	F2014	5	12.26	4524	8	10.91	26	50	61	11	286
1st term (2009) KP	00045	37.1	44.00	0007	04.4	40.0		54.0	10		507.0
First Term Form 2009 (CC)	Sp 2015	3 37.1	11.39	3827	34.1 36.7	12.2	61	51.3	42	-9.3	-567.3
Flist Tellin Folin 2009 (CC)	Fall 2015	37.1	11.39	3827	30.7 8	10.95	74	51.39	50.31	-1.08	-79.92
First Term Form 2005 (CC)	Spring	40.3	11.59	5027	36.6	10.95	74	51.55	50.51	-1.00	-19.92
	2016	5	12.26	4524	9	11.08	64	50.70	41.07	-9.63	-616.32
First Term Form 2009 (KP)		37.1			31.6						
· · · ·	Fall 2016	3	11.39	3827	9	11.19	35	51	37	-14	-490
First Term Form 2009 (KP)	Spring	37.1			35.0						
	2017	3	11.39	3827	7	10.57	72	51	45	-6	-432
First Term Form 2005 (CC)		40.3									
	Fall 16	5	12.26	4524	38.9	11.56	49	50.7	47.7	-3	-147
				Full Year (CHEM 122)							
Full year (1999) LW		40.1		122)							
	Spring 05	0.1	10.03	955	37.5	9.5	48	51	41	-10	-480
	opinig oo	40.1	10.00	000	01.0	0.0	10	01		10	100
Full year (1999) RS	Fall 04	9	10.03	955	42	12.7	33	51	59	8	264
Full year concept (2001) LW	Spring 05	33.1	11		31.9	9.9	49	53	48.5	-4.5	-220.5
	1 0	40.1									
Full year (1999) DD	Su 05	9	10.03	955	34.6	7.6	22	51	35	-16	-352
		40.1									
Full year (1999) RS	Fall 05	9	10.03	955	43.4	10.8	34	51	62	11	374
E	0	40.1	40.00	0.55	07			- 4		10	400
Full year (1999) LW	Spring 06	9	10.03	955	37	11	41	51	39	-12	-492
Full year concept (2001) LW	Spring 06	33	10		33	11	39	53	53	0	0
Full year (1999) DD	Su 06	40.1 9	10.03	955	42.4	9.1	20	51	60	9	180
Full year (2005)LW	Su 06 Sp 07		10.03	1858	42.4 32.2	9.1 9.5	20 47	51	60 43	-9	-423
Full year concept (2001) LW		35.5 31.2	9.99	1008	32.2 32.2	9.5 9.5	47 48	52 52	43 56		-423
Full year (2005)LW	Sp 07			4050						4	
Full year (2005)LW	Su 07	35.5	11.5	1858	37.7	12.6	11 27	52	61	9	99
Full year concept (2001) LW	Sp 08	35.5	11.5	1858	34	11	27	51	48	-3	-81
Full year (2005)LW	Sp 08 Sp 09	31.2 35.5	9.99 11.5	1858	35 36	11 11	26 31	53 51	60 54	7 3	182 93
		3h h	11 6	1858	36	11		51	5/		10

Full year concept (2001) LW	000	04.0	0.00		0.4		04	50	50	0	00
Full year concept (2001) LW	Sp 09	31.2	9.99	4050	34	14	31	53	56	3	93
Full year (2005) DL	Su 08	35.5	11.5	1858	33	9.7	21	51	42	-9	-189
Full year (2005) DL	Fall 08	35.5	11.5	1858	34.1	16.4	23	51	48	-3	-69
Full year (2005) CK	Su 09	35.4 5	11.51	1858	36.8 5	14.09	20	51	58	7	140
Full year (2005) DD	Su 09	35.4	11.51	1000	5	14.09	20	51	56	1	140
	Su10	5	11.51	1858	35	9.8	33	51	51	0	0
Full year (2005) KP	Curto	34.7		1000	34.0	0.0	00	0.	01	Ŭ	Ũ
	Fall 10	6	11.29	3201	7	10.9	41	51	51	0	0
Full year (2005) DL	Spring 11	35.5	11.5	1858	33.3	10.2	59	51	46	-5	-295
General Chemistry, 2005 MC	1 0	35.4									
	Fall 2012	5	11.51	900	30.5	10.33	45	51	35	-16	-720
General Chemistry, 1999 MC	Spring	40.1									
	2013	9	10.03	900	36.8	8.12	49	51	39	-12	-588
Full year (2005) KP		35.4		4050	31.8	40.00	44	54	40	0	000
Con Cham 2005 MC	Fall 10	5	11.51	1858	8	10.28	41	51	42	-9	-369
Gen. Chem. 2005 MC	F2013	34.4 5	11.51		31	8.66	39	54	40	-14	-546
Gen. Chem. Conceptual 2001 MC	12013	31.2	11.51		51	0.00	39	54	40	- 14	-540
	Sp2014	5	9.99		32.7	8.6	41	51	56	5	205
Gen. Chem. 2005 MC		34.4	0.00		•=	0.0		•		, in the second s	
	Sp2014	5	11.51		30.5	9.7	41	54	41	-13	-533
Gen. Chem. 1999 MC		40.1			32.6						
	Fall 2014	9	10.03		5	8.55	42	51	30.4	-20.6	-865.2
Gen. Chem. 2001 (Concept) MC		31.2								_	
	Fall 2014	5	9.99		42	17.6	41	51	44	-7	-287
Gen. Chem. 2005 MC	Spring	34.4	11 51		35.9	10.10	35	48	51.2	3.2	112
	2015 Spring	5 31.2	11.51		7	10.18	30	40	51.2	3.2	112
Gen. Chem. 2001 (Concept) MC	2015	51.2	10.0		34	7.3	34	51	60	9	306
	Summer	40.1	10.0		36.7	7.0	04	01	00	J	000
Gen Chem 1999 (MC)	2015	9	10.03		5	8.24	11	51	39	-12	-132
Gen Chem 2005 (MC)		34.4			37.9						
	F2015	5	11.5		2	11.32	35	48	61	13	455
Gen Chem 2001 (concept) (MC)		31.2									
	F2015	5	9.99		34	9.2	36	51	61	10	360
Gen Chem 2015 (MC)	0.0010	41.4	0.00	400	40	0.00	00				
	Sp2016	4	9.38	166	40	8.36	36				
Gen Chem 2017 (MC)	Sp2016				36	7.8	33				
General Chemistry 2015 (prelim	F40	41.4	0.4	400	50	40.0	20		10.4		
norms) MC General Chemistry 2001 (Conceptual)	F16	21.2	9.4	166	52	13.3	33		46.4		
MC	F16	31.2 5	10.0		52.9	15.4	33		48		
	110	5	10.0	Created by ICC is 2014						с D-	a 0 of 16
				Created by IEC Jan 2011	, Revised (JCT 2011, Re	evised Jul	y 2012, Re	visea Apr 201	о Ра	ge 9 of 16

General Chemistry 2015 (prelim norms)	Sp17	41.4 4	9.38	166	57.4	19.2	42		59.1		
					Total St	tudents	293 6	A	Average	-2	0
			Pre-Ge	neral Chemistry							
Toledo (1998) DL	Su 05	31.5	7.2		31.8	7.2	18	51	51	0	0
Toledo (1998) DL	Su 07	31.5	7.2		32.5	8.2	16	51	54	3	48
Toledo (1998) DL	Su 08	31.5	7.2		35.2	9.4	21	51	70	19	399
Toledo (1998) DL	Su 09	31.5	7.2		34.6	8.1	13	51	67	16	208
Toledo (1998) RF	F08	31.5	7.2		30.3	7.8	21	51	44	-7	-147
Toledo (1998) DL	F09	31.5	7.2		30.6	6	63	51	47	-4	-252
Toledo (1998) RF	F10	31.5	7.2		32	9.1	50	51	54	3	150
Toledo (1998) DL	Su10	31.5	7.2		32.7	6.4	28	51	58	7	196
					Total St	tudents	230	A	Verage	5	0
			Orga	nic Chemistry							
				CHEM 302							
Organic 2002 DD	F 04	43.2 8	11.83		34.2	7.7	18	48	23	-25	-450
	F 04	43.2	11.05		34.2	1.1	10	40	23	-25	-430
Organic 2002 DD	S 05	8	11.83		36.3	7.3	37	48	29	-19	-703
		39.2									
Organic 2004 DD	F05	2	12.16	3592	32	8.8	21	50	32	-18	-378
Organic 2004 DD	S06	39.2 2	12.16	3592	33.1	7.1	41	50	34	-16	-656
Organic 2004 DD	300	39.2	12.10	3392	55.1	7.1	41	50	- 34	-10	-050
Organic 2004 DD	F06	2	12.16	3592	35.9	10.8	29	50	41	-9	-261
-		39.2									
Organic 2004 DD	Sp07	2	12.16	3592	36.8	12.2	42	50	45	-5	-210
Organia 2004 DD	F07	39.2	10.40	2502	20.7	10.0	04	50	45	_	405
Organic 2004 DD	F07	2 39.2	12.16	3592	36.7	10.3	21	50	45	-5	-105
Organic 2004 DD	Sp08	39.2 2	12.16	3592	34.7	10.8	38	50	39	-11	-418
	Opoo	39.2	12.10	0002	01.1	10.0	00	00	00		410
Organic 2004 DD	F08	2	12.16	3592	35.5	6.9	32	50	41	-9	-288
Organic 2004 DD	Sp09	39.2	12.16	3592	38.2	10.1	28	50		-2	-56

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page **10** of **16**

		2									
Organic 2004 DD	F09	39.2 2	12.16	3592	34.8	11.8	18	50	39	-11	-198
Organic 2004 DD	Sp10	39.2 2	12.16	3592	37.4	10.2	35	50	46	-4	-140
	Sp10	43.2		3392							
Organic 2002 DD	F12	8 39.2	11.83		34.3	9	12	51.3	24	-27.3	-327.6
Organic 2004 DD	Sp12	2	12.16	3592	41.1 37.4	11.2	38	50	55	5	190
Organic Chemistry OR04 MD	spring 2013	39	12.16	3592	37.4 8		40	50	46.5	-3.5	-140
Organic Chemistry 2004 DD	Spring 2014	39.2 2	12.16		40.1	12	43	51	52.3	1.3	55.9
	F14	39.2 2	12.16	3592			8	51	25	-26	-208
Organic Chem 2004 MD	Spring	39.2									
Organic 2004 DD	2015 Spring	2 39.2	12.66	3592	38.2	12.8	39	50	47.7	-2.3	-89.7
Organic 2004 (MD) ORG 2004 (DD)	2016	2 39.2	12.66	3592	32 33.2	9	19	50	32	-18	-342
OKG 2004 (DD)	fall 2015	2	12.66	3593	5	11.36	12	50	34.8	-15.2	-182.4
ORG 2004 (DD)	summer 2015	39.2 2	12.66	3593	33.5 6	7.02	10	50	35.7	-14.3	-143
ORG 2004 (MD)	Spring 2017	39.2 2	12.66	3593	41	10	12	50	55	5	60
		39.2									
ORG 2004 (DD)	Fall 2016	2	12.66	3593	36.1	13.24	24	50	42.3	-7.7	-184.8
		07.0		CHEM 301							
Organic 1st 2006 DD	F06	37.8 3	9.81		33.8	9.2	48	50	37	-13	-624
Organic 1st 2006 DD	Sp07	37.8 3	9.81		31.6	6.5	24	50	28	-22	-528
Organic 1st 2006 DD	F07	37.8 3	9.81		33.4	9	54	50	35	-15	-810
		37.8									
Organic 1st 2006 DD	Sp08	3 37.8	9.81		29.6	7.2	35	50	22	-28	-980
Organic 1st 2006 DD	F08	3 37.8	9.81		36.3	7.9	50	50	46	-4	-200
Organic 1st 2006 DD	F09	3	9.81	1560	37.7	8.9	58	51	51	0	0
Organic 1st 2006 DD	Sp10	37.8 3	9.81	1560	32.6	8	29	51.3	31.8	-19.5	-565.5
Organic 1st 2006 DD	F10	37.8	9.81	1560	35.6	9.9	47	51.3	43.4	-7.9	-371.3

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 11 of 16

								tudonto	143			10	0
Adv	/ Organaic 401/501 2004 (MD)	Fall 2016	2	12.66	35	593	60	4	3	50	94	44	132
OR	G 1ST TERM 2010 (DD)	2017	9 39.2	11.74	19	933 3	37.8	22.69	45	52	47.4	-4.6	-207
		spring	39.3										
OR	G 1ST TERM 2010 (DD)	spring 2016	39.3 9	11.74	19	3 933	34.2 9	11.75	38	52	38.2	-13.8	-524.4
Org	ganic 1st term 2006 (MD)	Fall 2015	37.8 3	9.81	1560		33	8	35	50	33	-17	-595
Org	ganic 1st 2006 MD	Spring 2015	37.8 3	9.81	1560		32		24	51.3	30	-21.3	-511.2
Org	ganic 1st term 2010 DD	Fall 2014	9	11.74	1933	3	39.8	11.2	48	52	53	1	48
Firs	st term organic 2006 DD	Fall 2013	3 39.3	9.81		3	37.3	10.3	48	51	49.1	-1.9	-91.2
Ole		Sp 14	9 37.8	11.74		2	29.3	6.8	23	52.2	21	-31.2	-717.6
	ganic 1st term 2010 ZL	Sp 14	9 39.3	11.74		2	29.3	6.8	23	52.2	21	-31.2	-717.6
	Term Org Chem (OR06F) DD ganic 1st term 2010 ZL	fall 2012	3 39.3	9.81	1560	3	38.2	10.7	65	51.3	53	1.7	110.5
1st	Term Org Chem (OR06F) DD	spring 2013	37.8 3 37.8	9.81	1560		39	8.19	34	51.3	55	3.7	125.8
Org	ganic 1st 2006 DD	F11	3	9.81	1560	3	36.3	9.6	58	51.3	51	-0.3	-17.4
Org	ganic 1st 2006 PV	Sp12	37.8 3 37.8	9.81	1560	3	35.2	10.4	28	51.3	43	-8.3	-232.4
			3										

					Total S	Students	4		Average	-10	-9
								Perc	centile	Percentil	Differenc
ACS Final	Semester			Raw Score Avera	ige			Ave	erage	е	е
			Std.		CSU	Std.					
(Exam name & year)	Given	U.S.	Dev.	N =	-P	Dev.	N =	U.S.	CSU-P	Raw	Weighted
Biochemistry (CHEM 412)											
Biochemistry 2003 SB	Spring 04	35.4	9.3		29	5.7	4	50	26	-24	-96
Biochemistry 2003 SB	Spring 05	35.4	9.3		26	5.8	3	50	17	-33	-99
Biochemistry 2003 SB	Spring 06	35.4	9.3		31	1	3	50	34	-16	-48
Biochemistry 2007 SB	Spring 07	32.9	8.9		24	2.7	3	53	18	-35	-105
Biochemistry 2007 SB	Spring 09	32.9	8.9		30	4.1	7	53	39	-14	-98
Biochemistry 2007 SB	Spring 10	32.9	8.9	839	38.5	4.5	4	53	72	19	76
Biochemistry 2013 SB		24.5									
	Spring 12	3	6.41		29.1	1.24	4	NA	NA		

Biochemistry 2007 SB	Spring 13-							=0			
Biochemistry 2007 SB	UG Spring 13-	32.9	8.9	839	28.7	4.4	3	53	36	-17	-51
Biochemistry 2007 SB	G	32.9	8.9	839	36.8	7	5	53	62	9	45
Biochemistry 2012 SB	Spring						-			-	
	2014	32.9	8.9	839	34.1	8.14	10	53	55.3	2.3	23
Biochemistry 2012 SF	Spring	22.0	0.0	000	20.4	F 04	0	50	50 70	0.07	00.40
Biochemistry 2012 SB	2016 Spring	32.9	8.9	839	30.4	5.04	9	53	50.73	-2.27	-20.43
	2017	34	8.92		35.8	17.6	10	50	51.7	1.7	17
					Total St	udents	65		Average	-10	-5
			Phys	sical Chemistry							
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442	35.0		1	53	67	14	14
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442				53		-53	0
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1					53		-53	0
				CHEM 322							
D Cham Quant (1005) DC	Caring OF	04.0	5 0		40.7	<u> </u>	10	50	24	10	100
P-Chem Quant. (1995) RS	Spring 05	21.6	5.8		18.7	6.2	10	53	34	-19	-190
P-Chem Quant. (1995) RS	Spring 06	21.6	5.8		19.4	7.9	7	53	40	-13	-91
P-Chem Quant. (1995) RF	Fall 08	21.6	5.8		24.8	7.4	17	53	63	10	170
P-Chem Quant. (1995) RF	Fall 09	21.6	5.8		24.9	6.9	13	53	64	11	143
P-Chem Quant. (1995) RF	Fall 10	21.6	5.8		25.6	4.2	8	53	69	16	128
P-Chem Quant. (1995) RF	Fall 12	21.6	5.8		28.9	6.1	10	53	63	10	100
2006 P Chem (Quantum)	F13	29.2	7.8		29.3	6.1	12	51	49.7	-1.3	-15.6
Quantum Mechanics 2006 (RF)	Fall 2015	29.1 9	7.8	n/a	29.9	5.7	14	51	53.5	2.5	35
Quantum mechanics 2000 (RF)	Fall 2015	9 29.1	7.0	n/a	29.9	5.7	14	51	55.5	2.5	
Quantum Mechanics 2006 (RF)	Fall 2016	29.1	7.8		29.1	7.6	10	51	51	0	0
	1 all 2010	Ŭ	1.0		20.1	1.0	10	01	01	Ŭ	Ŭ
				CHEM 321							
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1		20.6	4.3	8	53	51	-2	-16
P-Chem Thermo. (1996) RS	Fall 05	21.3	7.1		18.4	5.4	12	53	40	-13	-156
P-Chem Thermo. (2006) RF	Spring 09	26.4	7.0		26.4	7.2	19	51	51	0	0
P-Chem Thermo. (2006) RF	Spring 10	26.4	7.0		28.2	8.8	18	51	56	5	90
P-Chem Thermo. (2006) RF	Spring 13	26.4	7.0		29.3	6.4	11	53	61.8	8.8	96.8
2006 P Chem (Thermo) RF	S14	26.4	7.0		24.1	4.5	16	52	40.7	-11.3	-180.8
2006 P Chem (Thermo)	Spring	26.4	7.0	n/a	26.7	7.6	14	51	51.4	0.4	5.6

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 13 of 16

	2015											
	Spring	27.4				30.3						
Thermodynamics 2013 (RF)	2016 Spring	8	6.5	378		1	8.74	16				
Thermodynamics 2013 (RF)	2017	27.6	6.8			31.6	5.9	9	52	71	19	171
						Total S	tudents	207		Average	-3	1
				hemistry (C								
1991 Inorganic LW	Spring 05	23.9	8		419	27.8	6.6	4	54	69	15	60
Inorganic (2002) CC	Spring 12	28.4 31.7	8.1			31	0	2	52	66	14	28
Inorganic 2009 MC	F2013	9	8.95		482	20.6	7.98	18	51	11.8	-39.2	-705.6
Inorganic Chem. 2009 MC	Fall 2014	31.7 9	8.95			26.1 3	10.13	15	51	37	-14	-210
		Ũ	0.00			Ū	10110	10	0.	01		210
Inorg. Chem. Foundations 2016 MC	F2015					31.6	5.8	15				
	12010					57.7	0.0	10				
Inorg. Chem. Foundations 2017 MC	Fall 2016	31.8	8395			5	26	13		53.5		
			norganic C	hemistry (C	HEM 4	21)						
Inorganic 2009 MC	Sp2014	31.7 9	8.95		482	38	7.5	7	51	69.3	18.3	128.1
	Spring	31.7	0.00		402	50	7.5	'	51	00.0	10.0	120.1
Inorganic Chem 2009 MC	2015	9	8.95			39.8	7.5	5	51	77	26	130
Inorganic Chemistry 2009	Sp2016	31.7 9	8.95		482	41.7	6.7	3	51	87	36	108
	302010	9	0.95		402		tudents	82		Average	8	-6
						Total O		02		Average	0	0
				hemistry (6		47)						
Analytical Chemistry 1994 DC	Fall 04	A 19.5	6.3	hemistry (C	233	18.8	5.3	12	54	51	-3	-36
Analytical Chemistry 1994 DC	1 all 04	19.5	0.5		200	10.0	0.0	12	- 34	51	-0	-30

Analytical Chemistry 1994 DC	Fall 05	19.5 19.4	6.3	233	17.9 18.7	4.5	18	54	45	-9	-162
Analytical Chemistry 1994 CK	Fall 08	19.4	3.37	233	6	4.62	18	51	51	0	0
Analytical Chemistry 2007 CK	Fall 10	27.5	7.1	707	28.8	6.7	16	52	59	7	112
Analytical Chemistry 2007 KP	Fall 10	27.5	7.1	707	33.5	5.6	6	52	81	29	174
	i dii i o	19.4	7.1	101	00.0	0.0	U	52	01	20	1/4
Analytical Chemistry 1994 CK	Fall 11	7	3.37	233	25.9	5	9	51	88	37	333
		27.5									
Analytical Chemistry 2007 CC	F2012	2	7.08	707	28	7.36	10	50	55	5	50
	_	27.5			28.1						
Analytical Chemistry 2007 CK	F 2013	2	7.08	707	1	6.21	19	52	56	4	76
Analytical Chamistry 2007 KD		27.5	7.00		20.0	70	40	50	4.4	0	104
Analytical Chemistry 2007 KP	Fall 2014	2 27.5	7.08		26.0	7.3	13	52	44	-8	-104
Analytical Chemistry 2007 CK	F 2015	27.5	7.08	707	25.8	6.5	18	52	42	-10	-180
	1 2010	26.1	1100		2010	0.0		02			
Analytical Chemistry 2014 KP	Fall 2016	4	7.14		28.4	9	8	50	56	6	48
					Total S	tudents	147	ŀ	Average	5	2
			Instrumer	tal Analysis							
Instrumental Analysis 2001 DL	Spring 05	32.8	7.8	237	29.8	6	6	47	37	-10	-60
Instrumental Analysis 2001 DL	Spring 06	32.8	7.8	237	29	11.8	13	47	36	-11	-143
Instrumental Analysis 2001 CK	Spring 07	32.8	7.8	237	30.7	8.2	11	47	38	-9	-99
Instrumental Analysis 2001 CK	Spring 09	32.8	7.8	237	29.2	7.8	15	47	36	-11	-165
Instrumental Analysis 2001 CK	Spring 10	32.8	7.8	237	34.3	7.7	12	47	56	9	108
Instrumental Analysis 2009 DL	Spring 11	24.1	6.6		28.7	8.5	10	51	78	27	270
Instrumental Analysis 2009 DL	Spring 13	24.1	6.6		29.8	5.2	8	51	82	31	248
		24.1			/		_				
Instrumental Analysis 2009 KP	Spring 12	2	6.6		26.1	6.87	7	51	59	8	57
Instrumental Methods 2009 CK	Spring 14	24.1 2	6.57		26.4	5.68	18	51	67	16	282
Instrumental Methous 2009 CK	Spring 14	∠ 24.1	0.57		20.4	5.00	10	51	07	10	202
		27.1									

Instrumental Analysis 2009 KP

Instrumental Methods 2009 CK

Instrumental Analysis 2009 KP

Spring 15

Spring 16

Spring 17

2

2

2

24.1

24.1

6.57

6.57

6.57

12

21

5

138

51

51

51

42

45

82

Average

-9.5

-6

31

5

-114

-126

155

3

22.3

23

29.8

Total Students

6.8

4.1

5.81

MFAT Exam	# Students		Overall		Physical		Organic		Inorganic		Analytical		National Mean	Biochem	Crit Think
			current yr	cumulative	current yr	cumulative									
semester	number	Cumulative	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%-tile	%-tile	%-tile
S 1995	5	5	77	77	72	72	71	71	78	78	84	84	50		
S-1996	6	11	87	82	91	82	71	71	83	81	96	91	50		
S-1997	7	18	49	69	52	71	48	62	65	75	25	65	49		
AY 97-98	10	28	95	79	94	79	93	73	91	80	91	74	49		
AY 98-99	6	34	46	73	9	67	44	68	51	75	68	73	49		
AY 99-00	9	43	66	71	59	65	64	67	75	75	71	73	49		
AY 00-01	9	52	44	67	51	63	40	62	32	68	54	70	49		
AY 01-02	6	58	85	69	76	64	80	64	76	69	99	73	50		
AY 02-03	2	60	75	69	75	64	75	65	80	69	60	72	50		
AY 03-04	9	69	55	67	60	64	25	59	50	66	65	71	50		
AY 04-05	6	75	80	68	75	65	65	60	85	68	85	72	50		
AY 05-06	4	79	88	69	82	66	85	61	78	68	84	73	50		
AY 06-07	5	84	35	67	50	65	10	58	45	67	50	72	50	1	75
AY 07-08	11	95	55	66	80	66	40	56	70	67	60	70	50	5	80
AY 08-09	10	105	25	62	40	64	10	52	60	67	25	66	45	10	10
AY 09-10	14	119	60	62	80	66	35	50	65	67	65	66	50	45	55
AY 10-11	7	126	55	61	80	67	25	48	55	66	80	67	50	30	50
AY 11-12	5	131	77	62	88	67	59	49	82	66	62	66	46	32	79
AY 12-13	4	135	60	62	60	67	58	49	67	67	36	66	51	21*	60*
AY 13-14	4	139	96	63	98	68	87	50	99	67	98	66	46	46*	58*
AY 14-15	13	152	68	63	58	67	72	52	56	66	56	66	48	67	61
AY 15-16	10	162	61	63	65	67	59	52	56	66	60	65	53	NA	NA
AY 16-16	12	174	62	63	67	67	51	52	66	66	64	65	53	NA	NA

*AY11-12 and 12-13 were combined to get a large enough N *AY12-13 and 13-14 were combined to get a large enough N