Colorado State University – Pueblo Academic Program Assessment Report for AY 2015-2016

Due: June 1, 2016

Program:____Chemistry_____

Date: __5/20/16_____

Completed by:____Chad Kinney_____

Assessment contributors (other faculty involved in this program's assessment): _____

Please complete this form for <u>each undergraduate</u>, <u>minor</u>, <u>certificate</u>, <u>and graduate program</u> (e.g., B.A., B.S., M.S.) in your department. Please copy any addenda (e.g., rubrics) and paste them in this document, and submit it to the dean of your college/school as per the deadline established. The dean will forward it to me as an email attachment before June 2, 2016. You'll also find the form at the assessment website at http://www.csupueblo.edu/Assessment/ResultsAndReports/Pages/default.aspx.

Please describe the 2015-2016 assessment activities for the program in Part I. Use Column H to describe improvements planned for 2016-2017 based on the assessment process. In Part II, please describe activities engaged in during 2015-2016 designed to close-the-loop (improve the program) based on assessment activities and the information gathered in 2014-2015. Thank you.

I. Program student learning outcomes (SLOs) assessed in this cycle, processes, results, and recommendations.

A. Which of the program SLOs were assessed during this cycle? Please include the outcome(s) verbatim from the assessment plan.	B. When was this SLO last assessed? Please indicate the semester and year.	C. What method was used for assessing the SLO? Please include a copy of any rubrics used in the assessment process.	D. Who was assessed? Please fully describe the student group(s) and the number of students or artifacts involved.	E. What is the expected achievement level and how many or what proportion of students should be at it?	F. What were the results of the assessment?	G. What were the department's conclusions about student performance?	H. What changes/improvements to the <u>program</u> are planned based on this assessment?
1. Students will exhibit a comprehensive knowledge of the fundamental theories and concepts necessary in the chemical sciences.	Data are collected at the end of every semester. The SLO was last assessed in Spring 2015.	The ACS Exams Institute provides standardized exams that cover all the major sub- disciplines within chemistry. The chemistry program uses these exams where appropriate	All students taking core chemistry courses will take the ACS exams (481 ACS exam scores were reported during the 15-16 AY.	Faculty expect that students on average will score at or bove the 50 percentile on both the ACS and MFAT standardized exams.	Student results on ACS exams, where comparison to national data is available, was general near the 50 th percentile for course averages (i.e. 40 th percentile and	Based on the expected knowledge of chemistry established by the American Chemical Society as well as tested by the MFAT exam, stundents at CSU-Pueblo are generally performing at	In general, areas for improvement in SLO performance continues to be with students in trailer sections, which is limited to the General Chemistry and Organic Chemistry curricula. Potential ways to address this is through more intensive supplemental

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 1 of 15

Γ		I		· .		1
	(general, organic,	This is does not		up). In some	or above the national	instruction (SI), which has been
	physical,	represent 481		course the	average among their	offered through the PROPEL
	analytical,	unique students		average	peers at other	Center. The future of the
	inorganic, and	since many		performance was	institutions of higher	PROPEL Center is uncertain; so
	biochemistry). The	students take		greater than the	education. Exceptions	this may not be a feasible
	Major Field	multiple		50 th percentile.	to this are generally	option. Some faculty in the
	Achievement Test	chemistry		Exceptions to this	limited trailer sections	Chemistry Department have
	(MFAT) is also	courses, and		include trailer courses in the	for those courses that	proposed new approaches to
	required of all			general chemistry	have them. The	
	graduating seniors	therefore, take		and organic		teaching General Chemistry
	and is used to	multiple exams		chemistry	majority of students	using a studio approach (small
	assess student	in an given AY).		curriculum (e.g.	completing a degree in	sections of combined lecture
	knowledge in	Ten students		CHEM 121 –	chemistry at CSU-	and lab). This will require
	chemistry.	completed the		Spring 2016,	Pueblo demonstrate an	additional resources, which
	-	MFAT exams		CHEM 122 -	knowledge of chemistry	have been included in recent
		during the 15-16		Summer 2015,	that exceeds that of	NSF-IUSE and the upcoming
		AY.		CHEM 301 -	most student	USDOEd grant proposals.
				Spring 2016,	completing a chemistry	Without additional resources,
				CHEM 302 -	degree at other	these approaches are not
				Summer and Fall	institutions using the	feasible in the current and
				2015), which	MFAT exam as an	likely future fiscal climates on
				were below the	assessment tool.	campus. If successful, these
				50 th percentile	assessment tool.	approach could be considered
				even when taught		
				be the same		for adaptation to the organic
				instructor as the		chemistry curriculum. Students
				on-sequence		that successfully complete the
				course. Trailer		first two years of the chemistry
				sections are commonly		curriculum (CHEM 121/L,
				comprised of		122/L, 301/L, and 302/L) largely
				many students		succeed in the program and
				that have		perform well on national exams
				previously been		like the MFAT. However, the
				unsuccessful in		department continues to
				course, and this		witness a large number of
				phenomenon of		underprepared students in the
				lower scores on		early chemistry curriculum,
				ACS exams in		which ultimately leads to high
				trailer sections		attrition. As noted above, it is
				compared to on-		,
				sequence courses		likely that the best way to
				has been		address these student
				observed in		difficiencies are approaches
				previous AYs. The		which require more resources
				MFAT exam		(SI and smaller sections in the
				scores again		early curriculum.)
				demonstrate		
				favorable		
				performance		
		I		among senior	I	

	1			1			1
					students with the		
					average scores in		
					allchemistry sub-		
					disciplines tested		
					being well above		
					the 50 th		
					percentile and		
					the overall		
					combined		
					average on the		
					exams in the 61 st		
					percentile.		
					Furthermore, 2 of		
					the 10 students		
					tested at the 95 th		
					percentile or		
					greater overall		
					and 6 of the 10		
					students tested at		
					the 69 th		
					percentile or		
					greater overall.		
					Summary of		
					current AY and		
					historic ACS and		
					MFAT exam		
					results are		
					included with this		
					assessment		
					report.		
2. Students will	Data are	The ACS Exams	All students	Faculty expect	Student results	Based on the expected	Similar conclusions as SLO 1
exhibit the					on ACS exams,	•	
	collected at	Institute provides	taking core	that students	where	knowledge of chemistry	stated above.
mathematical and	the end of	standardized	chemistry	on average will		established by the	
problem-solving	every	exams that cover	courses will take	score at or	comparison to	American Chemical	
skills necessary in	semester.	all the major sub-	the ACS exams	th	national data is	Society as well as	
the chemical		,		bove the 50	available, was	'	
sciences.	The SLO was	disciplines within	(481 ACS exam	percentile on	general near the	tested by the MFAT	
serences.	last assessed	chemistry. The	scores were	both the ACS	50 th percentile for	exam, stundents at	
	in Spring	chemistry program	reported during	and MFAT	course averages	CSU-Pueblo are	
	2015.	uses these exams	the 15-16 AY.		(i.e. 40 th	generally performing at	
		where appropriate	This is does not	standardized	percentile and	or above the national	
				exams.	up). In some		
		(general, organic,	represent 481		course the	average among their	
		physical,	unique students			peers at other	
		analytical,	since many		average	institutions of higher	
		inorganic, and	students take		performance was	education. Exceptions	
		U ,			greater than the	-	
		biochemistry). The	multiple		50 th percentile.	to this are generally	
		Major Field	chemistry		Exceptions to this	limited trailer sections	
		Achievement Test	courses, and		include trailer	for those courses that	
		(MFAT) is also	therefore, take		courses in the	have them. The	
		required of all	multiple exams		general chemistry	majority of students	
			multiple exams		and organic	majority of students	
L	I	1	1	1		1	1

[]	1			ala ana intra		
	graduating seniors	in an given AY).		chemistry	completing a degree in	
	and is used to	Ten students		curriculum (e.g.	chemistry at CSU-	
	assess student	completed the		CHEM 121 –	Pueblo demonstrate an	
	knowledge in	MFAT exams		Spring 2016,	knowledge of chemistry	
	chemistry.	during the 15-16		CHEM 122 –	that exceeds that of	
	chemistry.	AY.		Summer 2015,	most student	
		AI.		CHEM 301 –		
				Spring 2016,	completing a chemistry	
				CHEM 302 –	degree at other	
				Summer and Fall	institutions using the	
				2015), which	MFAT exam as an	
				were below the	assessment tool.	
				50 th percentile		
				even when taught		
				be the same		
				instructor as the		
				on-sequence		
				course. Trailer		
				sections are		
				commonly		
				comprised of		
				many students		
				that have		
				previously been		
				unsuccessful in		
				course, and this		
				phenomenon of		
				lower scores on		
				ACS exams in		
				trailer sections		
				compared to on-		
				sequence courses		
				has been		
				observed in		
				previous AYs. The		
				MFAT exam		
				scores again		
				demonstrate		
				favorable		
				performance		
				among senior		
				students with the		
				average scores in		
				allchemistry sub-		
				disciplines tested		
				being well above the 50 th		
				percentile and		
				the overall combined		
				average on the exams in the 61 st		
				Example of		

3. Students will be able to research, review and understand the current chemical litersture and heData are collected at much of the semester.Although aspects of Learning Outcome Three are incorporated into much of the semester.Devlopment of the skillsFaculty evaluations of the senior seminar are pooled and included in theEight of the nine students assessed the senior seminar are pooled and chemistry curriculum toGiven the performance in meeting this SLO the aspects the senior seminar are pooled and included in theEight of the seminar are pooled and current chemistry curriculum toGiven the performance in meeting this SLO the aspects the senior seminar are pooled and included in theCHEM 493Generally speaking students have current chemistry curriculum to appropriate at this time. No	able to research, review and understand the current chemical literature and be able to critically evaluate, write about and professionally present such material.collected at the end of every semester. The SLO was last assessed in Spring 2015.of Out every semester. The SLO was last assessed in Spring 2015.able to critically evaluate, write about and professionally present such material.collected at the end of every semester. The SLO was last assessed in Spring 2015.out out plate every every semester.	of LearningtheDutcome Three are ncorporated into much of the eurriculum, assessment of the hird learning outcome takes olace during the required senior seminar course, Chem 493 and in other higher level courses. All aculty are expected to attend he student's seniorthe required senior	he skills equired for this LO occur hroughout the urriculum. lowever, final ssessment ccurs as part of he CHEM 493- enior Seminar ourse (9 tudents 15-16	evaluations of the senior seminar are pooled and included in the student's grade for the course which is compiled by the instructor of record. Evaluations are given on a 100- point scale and faculty expect students to achieve an	assessment report. Eight of the nine students assessed through the CHEM 493 course were at the 70% mark or better. The one student who did not meet this expectation completed the course with an	students have developed the needed skills throughout the chemistry curriculum to meet this SLO. This is demonstrated by performance at or above the expected level of achievement in CHEM 493 as assessed by the department	meeting this SLO the aspects of the chemistry curriculum designed to meet it appear appropriate at this time. No changes are deamed necessary
---	---	---	---	--	--	---	---

Comments:

II. Follow-up (closing the loop) on results and activities from previous assessment cycles. In this section, please describe actions taken during this cycle that were based on, or implemented to address, the results of assessment from previous cycles.

A. What SLO(s) did you address? Please include the outcome(s) verbatim from the assessment plan.	B. When was this SLO last assessed? Please indicate the semester and year.	C. What were the recommendations for change from the previous assessment?	D. Were the recommendations for change acted upon? If not, why?	E. What were the results of the changes? If the changes were not effective, what are the next steps or the new recommendations?
SLO 1 and 2	Data are collected at the end of every semester. The SLO was last assessed in Spring 2015.	Given the consistently indentified deficiencies in trailer courses early in chemistry curriculum the proposed change was to use the SAFE Course approach used during the summer and currently supported through the PROPEL grant.	Given that the SAFE approach requires additional time and effort on the part of the instructor as well as limits class size, this approach would require additional resources to higher instructors (VAP). This was acknowleged in the recommendations from the previous year. The chair discussed the feasibility of this approach with the dean, but unfortunately the resources were not available to pursue this potential solution.	These changes were not feasible due to lack of resources. Therefore, as highlighted above, approaches that relie on outside funding are currently being pursued through two substantial external funding requests.

Comments:

Colorado
Pueblo.

Seminar Score	
Abstract (%)	
100 point scale	

Seminar Assessment & Comments

CHEM 493

Student Presenter		100 point scale
	te	
The objective of the 50 minute talk is to illustrate the stu	dent's ability to coherently present information of a spec	ific nature.
Topic: (10 pts)		
Appropriateness of topic: <i>narrow enough</i> to include specific material while having Is it of <i>general interest</i> ? Is it timely?	breadth of interest? Is it sufficiently chemical in nature?	
Content: (35 pts)		
Is there <i>sufficient chemistry</i> in the presentation? Is the material presented <i>relevan</i>	<i>t to the topic</i> , correct, well-documented and current? Is it <i>clea</i>	arly and logically presented?
Organization: (20 pts) Does the <i>introduction</i> provide a <i>good overview</i> ? Does each <i>topic flow naturally</i> for intended audience?	rm the previous one? Does the presentation <i>"tell a story"</i> ? Is t	the <i>material appropriate</i> for the
Presentation: (20 pts) Does the presenter maintain <i>good eye contact</i> , and use <i>appropriate strength of vol</i>	ice, while engaging listeners?	
(40 min) Start time Stop time		
Graphics, Diagrams, Figures: (10 pts) Do the visual aids <i>supplement the presentation</i> or are they superfluous? Do visual	aids fit <i>logically</i> into presentation? Are they <i>discussed in detai</i>	il? Are they easy to read and follow?
Use of Power Point: (5 pts)		

How well was the visual presentation put together? (general appearance, clarity, and legibility of slides; effective use of Power Point).

General Impressions:

American Chemical Society Standardized Final Examination Data Year 2004- present

Academic

				_					centile		
ACS Final	Semester	r		Raw Score A		0.1	r	Ave	erage	Percentile	Difference
	Civer	U.S.	Std.	N =	CSU- P	Std.	NI		CSU-P	David	
(Exam name & year)	Given		Dev.		-	Dev.	N =	U.S.	CSU-P	Raw	Weighted
			General	Chemistry E 1st Term	xams						
				(CHEM							
				121)							
1st term (2000) DL	Su 05	39.6	11		41.3	11.3	16	51	56	5	80
1st term (2000) LW	Fall 04	39.6	11		44	14	58	51	65	14	812
1st term (1997)LW	Fall 05	39	11	2000	39	12	63	51	48	-3	-189
1st term (1997)LW	Fall 06	39	11	2000	42	11	38	51	57	6	228
1st term (2000)LW	Fall 07	40	11		39	12	73	48	48	0	0
1st term (2005)LW	Fall 08	40	12	4524	38	10	56	48	45	-3	-168
1st term (2000)RF	F08	39.6	11		33.8	9.8	15	51	33	-18	-270
1st term (2000) DL	Su 07	39.6	11		39.1	10.4	16	51	49	-2	-32
1st term (2000) DL	Su 08	39.6	11		42.9	13.2	19	51	61	10	190
1st term (2000) DL	Su 09	39.6	11		45.9	15.1	10	51	70	19	190
1st term (2005) CK	Spring										
	2010	40.35	12.26	4524	32.05	10.91	65	50	28	-22	-1430
1st term (2009) KP	Spring	074		0007	00.0	44.0	74	F 4	F 4	0	000
1st term (2009) RF	2010	37.1	11.4	3827	38.2	11.6	74	51	54	3	222
· · · · · ·	F10	37.1	11.4	3827	38.2	12.2	33	51	54	3	99
1st term (2005) DL 1st term (2009) DD	Su 10	40.35	12.26	4524	45.08	11.09	22	50	63	13	286
1st term (2009) CC	Su 11	37.13	11.39	3827	36.8	10.3	26	51	50	-1	-26
1st term (2009) CC	F11	37.13	11.39	3827	33.9	11.2	78	51	41.8	-9.2	-717.6
1st term (2009) RF	Sp12 F12	37.13	11.39 11.39	3827 3827	34.3	10.7	90	51	42.9	-8.1	-729
2nd term (2009) CC		37.13			37.1	9.1	71 73	51	50.5	-0.5	-35.5
General Chemistry I 2009 (rev. 2011)	Sp 14	37.13	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
CC	F2012	37.13	11.39	3827	36	7.75	17	50	48	-2	-34
General Chemistry I 2009 (rev. 2011)	S2013	37.13	11.39	3827	33.92	9	83	50	42	-8	-664
Gen. Chem. First Term 2009	Fall 2013	37.13	11.39	3827	34.7	9.7	81	51	43.4	-7.6	-615.6
1st term (2009) CC	Sp 14	37.13	11.39	3827	34.3	9.4	73	51	43.2	-7.8	-569.4
1st Term Form 2009 Rev 2011 CC	Fall 2014	37.13	11.39	3827	38.54	12.06	34	51.3	56	4.7	159.8
First Term General Chemistry KP	F2014	40.35	12.26	4524	44.08	10.91	26	50	61	11	286
1st term (2009) KP	Sp 2015	37.13	11.39	3827	34.1	12.2	61	51.3	42	-9.3	-567.3
First Term Form 2009 (CC)	Fall 2015	37.13	11.39	3827	36.78	10.95	74	51.39	50.31	-1.08	-79.92
	10112010	01110	11.00	0021	00.10	10.00		01100	00101	1.00	10.02

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 8 of 15

First Term Form 2005 (CC)	Spring 2016	40.35	12.26	4524	36.69	11.08	64	50.70	41.07	-9.63	-616.32
				Full Year							
				(CHEM 122)							
Full year (1999) LW	Spring 05	40.19	10.03	955	37.5	9.5	48	51	41	-10	-480
Full year (1999) RS	Fall 04	40.19	10.03	955	42	12.7	33	51	59	8	264
Full year concept (2001) LW	Spring 05	33.1	11		31.9	9.9	49	53	48.5	-4.5	-220.5
Full year (1999) DD	Su 05	40.19	10.03	955	34.6	7.6	22	51	35	-16	-352
Full year (1999) RS	Fall 05	40.19	10.03	955	43.4	10.8	34	51	62	11	374
Full year (1999) LW	Spring 06	40.19	10.03	955	37	11	41	51	39	-12	-492
Full year concept (2001) LW	Spring 06	33	10		33	11	39	53	53	0	0
Full year (1999) DD	Su 06	40.19	10.03	955	42.4	9.1	20	51	60	9	180
Full year (2005)LW	Sp 07	35.5	11.5	1858	32.2	9.5	47	52	43	-9	-423
Full year concept (2001) LW	Sp 07	31.2	9.99		32.2	9.5	48	52	56	4	192
Full year (2005)LW	Su 07	35.5	11.5	1858	37.7	12.6	11	52	61	9	99
Full year (2005)LW	Sp 08	35.5	11.5	1858	34	11	27	51	48	-3	-81
Full year concept (2001) LW	Sp 08	31.2	9.99		35	11	26	53	60	7	182
Full year (2005)LW	Sp 09	35.5	11.5	1858	36	11	31	51	54	3	93
Full year concept (2001) LW	Sp 09	31.2	9.99		34	14	31	53	56	3	93
Full year (2005) DL	Su 08	35.5	11.5	1858	33	9.7	21	51	42	-9	-189
Full year (2005) DL	Fall 08	35.5	11.5	1858	34.1	16.4	23	51	48	-3	-69
Full year (2005) CK	Su 09	35.45	11.51	1858	36.85	14.09	20	51	58	7	140
Full year (2005) DD	Su10	35.45	11.51	1858	35	9.8	33	51	51	0	0
Full year (2005) KP	Fall 10	34.76	11.29	3201	34.07	10.9	41	51	51	0	0
Full year (2005) DL	Spring 11	35.5	11.5	1858	33.3	10.2	59	51	46	-5	-295
General Chemistry, 2005 MC	Fall 2012	35.45	11.51	900	30.5	10.33	45	51	35	-16	-720
General Chemistry, 1999 MC	Spring									10	
Full year (2005) KD	2013	40.19	10.03	900	36.8	8.12	49	51	39	-12	-588
Full year (2005) KP	Fall 10	35.45	11.51	1858	31.88	10.28	41	51	42	-9	-369
Gen. Chem. 2005 MC Gen. Chem. Conceptual 2001 MC	F2013	34.45	11.51		31	8.66	39	54	40	-14	-546
	Sp2014	31.25	9.99		32.7	8.6	41	51	56	5	205
Gen. Chem. 2005 MC Gen. Chem. 1999 MC	Sp2014	34.45	11.51		30.5	9.7	41	54	41	-13	-533
	Fall 2014	40.19	10.03		32.65	8.55	42	51	30.4	-20.6	-865.2
Gen. Chem. 2001 (Concept) MC Gen. Chem. 2005 MC	Fall 2014 Spring	31.25	9.99		42	17.6	41	51	44	-7	-287
Cen. Chem. 2003 MC	Spring 2015	34.45	11.51		35.97	10.18	35	48	51.2	3.2	112
	2010	01110	1.01	Countrad Inc. 15					2012 Revised		Page 9 of 1

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 9 of 15

Gen. Chem. 2001 (Concept) MC	Spring 2015	31.25	10.0		34	7.3	34	51	60	9	306
	Summer	01.20	10.0		01	1.0	0.	01	00	Ũ	000
Gen Chem 1999 (MC)	2015	40.19	10.03		36.75	8.24	11	51	39	-12	-132
Gen Chem 2005 (MC)	F2015	34.45	11.5		37.92	11.32	35	48	61	13	455
Gen Chem 2001 (concept) (MC)	F2015	31.25	9.99		34	9.2	36	51	61	10	360
Gen Chem 2015 (MC)	Sp2016	41.44	9.38	166	40	8.36	36				
Gen Chem 2017 (MC)	Sp2016				36	7.8	33				
					Total S	Students	2672		Average	-2	0
				eral Chen							
Toledo (1998) DL	Su 05	31.5	7.2		31.8	7.2	18	51	51	0	0
Toledo (1998) DL	Su 07	31.5	7.2		32.5	8.2	16	51	54	3	48
Toledo (1998) DL	Su 08	31.5	7.2		35.2	9.4	21	51	70	19	399
Toledo (1998) DL	Su 09	31.5	7.2		34.6	8.1	13	51	67	16	208
Toledo (1998) RF	F08	31.5	7.2		30.3	7.8	21	51	44	-7	-147
Foledo (1998) DL	F09	31.5	7.2		30.6	6	63	51	47	-4	-252
Toledo (1998) RF	F10	31.5	7.2		32	9.1	50	51	54	3	150
Toledo (1998) DL	Su10	31.5	7.2		32.7	6.4	28	51	58	7	196
					Total S	Students	230		Average	5	0
			0		. 4						
			Organ	ic Chemis CHEM	su y						
Organic 2002 DD		42.00	11.00	302	24.0	77	10	40	00	05	450
-	F 04 S 05	43.28 43.28	11.83 11.83		34.2 36.3	7.7 7.3	18 37	48 48	23 29	-25 -19	-450 -703
Drganic 2002 DD Drganic 2004 DD	5 05 F05	43.28 39.22	12.16	3592	36.3 32	7.3 8.8	37 21	40 50	29 32	-19 -18	-703 -378
Organic 2004 DD Organic 2004 DD	506	39.22 39.22	12.16	3592 3592	32 33.1	o.o 7.1	21 41	50 50	32 34	-16 -16	-378 -656
Drganic 2004 DD Drganic 2004 DD	506 F06		12.16	3592 3592	33.1	10.8	41 29	50 50	34 41	-16 -9	
		39.22									-261
Drganic 2004 DD	Sp07	39.22	12.16	3592	36.8	12.2	42	50	45 45	-5	-210
Organic 2004 DD	F07	39.22	12.16	3592	36.7	10.3	21	50	45	-5	-105
Organic 2004 DD	Sp08	39.22	12.16	3592	34.7 35 5	10.8	38	50	39 41	-11	-418
Organic 2004 DD	F08	39.22	12.16	3592	35.5	6.9	32	50	41 49	-9	-288
Organic 2004 DD Organic 2004 DD	Sp09 F09	39.22	12.16	3592	38.2	10.1	28	50	48	-2 11	-56
Jiyanic 2004 DD	FU9	39.22	12.16	3592	34.8	11.8	18	50	39	-11	-198

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 10 of 15

Organic 204 DD Sp12 39.22 12.16 3592 41.1 11.2 38 50 55 5 1 Organic Chemistry Q004 DD 2014 39.22 12.16 3592 37.48 40 50 46.5 -3.5 -1 Organic Chemistry 2004 DD 2014 39.22 12.16 3592 8 51 25 -26 -22 Organic Chem 2004 MD F14 39.22 12.16 3592 38.2 12.8 39 50 47.7 -2.3 -88 Organic 2004 DD 2016 39.22 12.66 3592 32.2 9 19 50 32 -18 -33 Organic 2004 (DD) 2015 39.22 12.66 3593 33.26 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 <th>Organic 2004 DD</th> <th>Sp10</th> <th>39.22</th> <th>12.16</th> <th>3592</th> <th>37.4</th> <th>10.2</th> <th>35</th> <th>50</th> <th>46</th> <th>-4</th> <th>-140</th>	Organic 2004 DD	Sp10	39.22	12.16	3592	37.4	10.2	35	50	46	-4	-140
Organic Chemistry OR04 MD spring 2013 Spring 39 12.16 3592 37.48 40 50 46.5 -3.5 -1 Organic Chemistry 2004 DD 2014 39.22 12.16 40.1 12 43 51 52.3 1.3 55 Organic Chem 2004 MD F14 39.22 12.16 3592 8 51 25 -26	0											-327.6
Spring Organic Chemistry 2004 DD Spring 2014 39.22 12.16 3592 8 51 52.3 1.3 55 Organic Chem 2004 MD P14 39.22 12.16 3592 8 51 25 -26 -22 Organic 2004 DD 2015 39.22 12.66 3592 38.2 12.8 39 50 47.7 -2.3 -68 Organic 204 (MD) 2015 39.22 12.66 3593 33.25 11.36 12 50 34.8 -15.2 -183 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD F07 37.83 9.81 33.4 9.54 50 28 -22 -26 -50 Organic 1st 2006 DD F07 37.83 9.81	•	•					11.2					190
Organic Chemistry 2004 DD 2014 39.22 12.16 40.1 12 43 51 52.3 1.3 55 Organic Chem 2004 MD F14 39.22 12.16 3592 8 51 25 -26 -26 -27 Organic 2004 DD 2015 39.22 12.66 3592 38.2 12.8 39 50 47.7 -2.3 -86 Organic 204 (MD) 2016 39.22 12.66 3593 33.25 11.36 12 50 34.8 -15.2 -186 ORG 2004 (DD) fall 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 31.6 6.5 24 50 35 -15 -8 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 35 -15 -8 Organic 1st 2006 DD F08 37.83	Organic Chemistry OR04 MD		39	12.16	3592	37.48		40	50	46.5	-3.5	-140
Organic Chem 2004 MD F14 39.22 12.16 3592 8 51 25 -26 -22 Organic 2004 DD 2015 39.22 12.66 3592 38.2 12.8 39 50 47.7 -2.3 -86 Organic 204 (MD) 2015 39.22 12.66 3592 32 9 19 50 32 -18 -3 ORG 2004 (DD) fail 2015 39.22 12.66 3593 33.25 11.36 12 50 34.8 -15.2 -182 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 31.6 6.5 24 50 28 -22 -55 Organic 1st 2006 DD F07 37.83 9.81 36.3 7.9 50 50 46 -4 -22 Organic 1st 2006 DD F08 37.83	Organic Chemistry 2004 DD		30.22	12 16		40.1	12	13	51	52.3	13	55.9
Spring Organic 2004 DD Spring 2015 39.22 12.66 3592 38.2 12.8 39 50 47.7 -2.3 -86 Organic 204 (MD) 2016 39.22 12.66 3592 32 9 19 50 32 -18 -33 ORG 2004 (DD) fall 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -15.2 -162 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD F07 37.83 9.81 33.4 9.54 50 28 -22 -5 Organic 1st 2006 DD F08 37.83 9.81 29.6 7.2 35 50 22 -28 -9 Organic 1st 2006 DD F08					3502	40.1	12					-208
Organic 2004 DD 2015 39.22 12.66 3592 38.2 12.8 39 50 47.7 -2.3 -863 Organic 204 (MD) 2016 39.22 12.66 3592 32 9 19 50 32 -18 -33 ORG 2004 (DD) fall 2015 39.22 12.66 3593 33.25 11.36 12 50 34.8 -15.2 -182 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 35 -15 -8 Organic 1st 2006 DD Sp08 37.83 9.81 266 7.2 35 50 22 -28 -9 Organic 1st 2006 DD F08 37.83	Organic Onem 2004 MD		00.22	12.10	0002			0	01	20	20	200
Spring ORG 2004 (DD) Spring 2016 39.22 39.22 12.66 3593 33.25 33.25 11.36 12 50 34.8 -15.2 -186 -16.2 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD F07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 36.3 7.9 50 50 42 -2 -5 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F10 37.83	Organic 2004 DD		39.22	12.66	3592	38.2	12.8	39	50	47.7	-2.3	-89.7
ORG 2004 (DD) fail 2015 39.22 12.66 3593 33.25 11.36 12 50 34.8 -15.2 -182 ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 33.4 9 54 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 35 -15 -8 Organic 1st 2006 DD F08 37.83 9.81 36.3 7.9 50 50 46 -4 -2 Organic 1st 2006 DD F08 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 566 Organic 1st 2006 DD F10 37.83 9	-											
ORG 2004 (DD) Summer 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 29.6 7.2 35 50 22 -28 -9 Organic 1st 2006 DD Sp08 37.83 9.81 29.6 7.2 35 50 22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F09 37.83 9.81 1560 35.2 10.4 28 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F10 37.83 9.81												-342
ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 CHEM 301 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 36.3 7.9 50 50 22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 89 58 51 51 0 Organic 1st 2006 DD F08 37.83 9.81 1560 37.6 8.9 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F10 37.83 9.81 1560 35.2 10.4 28 51.3 31.8 -19.9 -37.13 Organic 1st 2006 DD	ORG 2004 (DD)	fall 2015	39.22	12.66	3593	33.25	11.36	12	50	34.8	-15.2	-182.4
ORG 2004 (DD) 2015 39.22 12.66 3593 33.56 7.02 10 50 35.7 -14.3 -1 CHEM 301 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 36.3 7.9 50 50 22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F08 37.83 9.81 1560 37.6 8.9 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F10 37.83 9.81 1560 35.2 10.4 28 51.3 31.8 -19.9 -37.13 Organic 1st 2006 DD <td< td=""><td></td><td>summer</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		summer										
301 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 28 -22 -28 -9 Organic 1st 2006 DD Sp08 37.83 9.81 36.3 7.9 50 50 46 -4 -22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F09 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F11 37.83 9.81 1560 35.2 10.4 28 51.3 43 -8.3 -232	ORG 2004 (DD)		39.22	12.66	3593	33.56	7.02	10	50	35.7	-14.3	-143
301 Organic 1st 2006 DD F06 37.83 9.81 33.8 9.2 48 50 37 -13 -6 Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -5 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 28 -22 -28 -9 Organic 1st 2006 DD Sp08 37.83 9.81 36.3 7.9 50 50 46 -4 -22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F09 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F11 37.83 9.81 1560 35.2 10.4 28 51.3 43 -8.3 -232					CHEM							
Organic 1st 2006 DD Sp07 37.83 9.81 31.6 6.5 24 50 28 -22 -55 Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 35 -15 -8 Organic 1st 2006 DD Sp08 37.83 9.81 29.6 7.2 35 50 22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 36.3 7.9 50 50 46 -4 -22 Organic 1st 2006 DD F08 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD Sp10 37.83 9.81 1560 35.2 10.4 28 51.3 43.4 -7.9 -37.4 Organic 1st 2006 DD F11 37.83 9.81 1560 36.3 9.6 58 51.3 51.3 53 1.7 11												
Organic 1st 2006 DD F07 37.83 9.81 33.4 9 54 50 35 -15 -8 Organic 1st 2006 DD Sp08 37.83 9.81 29.6 7.2 35 50 22 -28 -9 Organic 1st 2006 DD F08 37.83 9.81 36.3 7.9 50 50 46 -4 -2 Organic 1st 2006 DD F09 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD Sp10 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 -568 Organic 1st 2006 DD F10 37.83 9.81 1560 35.2 10.4 28 51.3 43 -8.3 -232 Organic 1st 2006 DD F11 37.83 9.81 1560 38.2 10.7 65 51.3 53 1.7 1	Organic 1st 2006 DD	F06	37.83	9.81		33.8	9.2	48	50	37	-13	-624
Organic 1st 2006 DD Sp08 37.83 9.81 29.6 7.2 35 50 22 -28 -99 Organic 1st 2006 DD F08 37.83 9.81 36.3 7.9 50 50 46 -4 -22 Organic 1st 2006 DD F09 37.83 9.81 1560 37.7 8.9 58 51 51 0 Organic 1st 2006 DD F09 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 -566 Organic 1st 2006 DD F10 37.83 9.81 1560 35.6 9.9 47 51.3 43.4 -7.9 -37.4 Organic 1st 2006 DD F11 37.83 9.81 1560 36.3 9.6 58 51.3 51 -0.3 -17 1st Term Org Chem (OR06F) DD spring 2013 37.83 9.81 1560 38.2 10.7 65 51.3 53	•		37.83	9.81			6.5	24	50		-22	-528
Organic 1st 2006 DDF0837.839.8136.37.9505046-4-22Organic 1st 2006 DDF0937.839.81156037.78.95851510Organic 1st 2006 DDSp1037.839.81156032.682951.331.8-19.5-566Organic 1st 2006 DDF1037.839.81156035.69.94751.343.4-7.9-374Organic 1st 2006 DDF1137.839.81156035.210.42851.343-8.3-232Organic 1st 2006 DDF1137.839.81156036.39.65851.351-0.3-171st Term Org Chem (OR06F) DDspring 201337.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st 2006 MD201537.839.811560322451.330-21.3-5	•	F07	37.83									-810
Organic 1st 2006 DDF0937.839.81156037.78.95851510Organic 1st 2006 DDSp1037.839.81156032.682951.331.8-19.5-566Organic 1st 2006 DDF1037.839.81156035.69.94751.343.4-7.9-371Organic 1st 2006 PVSp1237.839.81156035.210.42851.343-8.3-232Organic 1st 2006 DDF1137.839.81156036.39.65851.351-0.3-171st Term Org Chem (OR06F) DDspring 201337.839.811560398.193451.3553.71251st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 DDFall 201337.839.8137.310.3485149.1-1.9-94Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st term 2010 DDFall 201439.3911.74193339.811.2 <td>0</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-28</td> <td>-980</td>	0	•									-28	-980
Organic 1st 2006 DD Sp10 37.83 9.81 1560 32.6 8 29 51.3 31.8 -19.5 -565 Organic 1st 2006 DD F10 37.83 9.81 1560 35.6 9.9 47 51.3 43.4 -7.9 -371 Organic 1st 2006 PV Sp12 37.83 9.81 1560 35.2 10.4 28 51.3 43 -8.3 -232 Organic 1st 2006 DD F11 37.83 9.81 1560 36.3 9.6 58 51.3 51 -0.3 -177 1st Term Org Chem (OR06F) DD spring 2013 37.83 9.81 1560 38.2 10.7 65 51.3 53 1.7 110 Organic 1st term 2010 ZL Sp 14 39.39 11.74 29.3 6.8 23 52.2 21 -31.2 -717 Organic 1st term 2010 ZL Sp 14 39.39 11.74 29.3 6.8 23 52.2 21 -31.2 -717 <td>•</td> <td></td> <td></td> <td>9.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-4</td> <td>-200</td>	•			9.81							-4	-200
Organic 1st 2006 DDF1037.839.81156035.69.94751.343.4-7.9-37.4Organic 1st 2006 PVSp1237.839.81156035.210.42851.343-8.3-232Organic 1st 2006 DDF1137.839.81156036.39.65851.351-0.3-171st Term Org Chem (OR06F) DDspring 201337.839.811560398.193451.3553.71251st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	•										0	0
Organic 1st 2006 PVSp1237.839.81156035.210.42851.343-8.3-232Organic 1st 2006 DDF1137.839.81156036.39.65851.351-0.3-171st Term Org Chem (OR06F) DDspring 201337.839.811560398.193451.3553.71251st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717First term organic 2006 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	•	•										-565.5
Organic 1st 2006 DDF1137.839.81156036.39.65851.351-0.3-171st Term Org Chem (OR06F) DDspring 201337.839.811560398.193451.3553.71251st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	•											-371.3
1st Term Org Chem (OR06F) DDspring 201337.839.811560398.193451.3553.71251st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717First term organic 2006 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	•	•								43		-232.4
1st Term Org Chem (OR06F) DDfall 201237.839.81156038.210.76551.3531.7110Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717First term organic 2006 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	0											-17.4
Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717Organic 1st term 2010 ZLSp 1439.3911.7429.36.82352.221-31.2-717First term organic 2006 DDFall 201337.839.8137.310.3485149.1-1.9-91Organic 1st term 2010 DDFall 201439.3911.74193339.811.24852531Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	- · · · · · · · · · · · · · · · · · · ·	· · · ·										125.8
Organic 1st term 2010 ZL Sp 14 39.39 11.74 29.3 6.8 23 52.2 21 -31.2 -717 First term organic 2006 DD Fall 2013 37.83 9.81 37.3 10.3 48 51 49.1 -1.9 -91 Organic 1st term 2010 DD Fall 2014 39.39 11.74 1933 39.8 11.2 48 52 53 1 Organic 1st term 2010 DD Fall 2014 39.39 11.74 1933 39.8 11.2 48 52 53 1 Organic 1st 2006 MD 2015 37.83 9.81 1560 32 24 51.3 30 -21.3 -511 Organic 1st term 2006 (MD) Fall 2015 37.83 9.81 1560 33 8 35 50 33 -17 -5					1560							110.5
First term organic 2006 DD Fall 2013 37.83 9.81 37.3 10.3 48 51 49.1 -1.9 -91 Organic 1st term 2010 DD Fall 2014 39.39 11.74 1933 39.8 11.2 48 52 53 1 Organic 1st 2006 MD 2015 37.83 9.81 1560 32 24 51.3 30 -21.3 -511 Organic 1st term 2006 (MD) Fall 2015 37.83 9.81 1560 33 8 35 50 33 -17 -5	-	•										-717.6
Organic 1st term 2010 DD Fall 2014 39.39 11.74 1933 39.8 11.2 48 52 53 1 Organic 1st 2006 MD 2015 37.83 9.81 1560 32 24 51.3 30 -21.3 -511 Organic 1st term 2006 (MD) Fall 2015 37.83 9.81 1560 33 8 35 50 33 -17 -5	0	•										-717.6
Spring Organic 1st 2006 MD 2015 37.83 9.81 1560 32 24 51.3 30 -21.3 -511 Organic 1st term 2006 (MD) Fall 2015 37.83 9.81 1560 33 8 35 50 33 -17 -5	•											-91.2
Organic 1st 2006 MD201537.839.811560322451.330-21.3-511Organic 1st term 2006 (MD)Fall 201537.839.811560338355033-17-5	Organic 1st term 2010 DD		39.39	11.74	1933	39.8	11.2	48	52	53	1	48
	Organic 1st 2006 MD		37.83	9.81	1560	32		24	51.3	30	-21.3	-511.2
ORG 1ST TERM 2010 (DD) spring 2016 39.39 11.74 1933 34.29 11.75 38 52 38.2 -13.8 -524	Organic 1st term 2006 (MD)	Fall 2015	37.83	9.81	1560	33				33	-17	-595
	ORG 1ST TERM 2010 (DD)	spring 2016	39.39	11.74	1933	34.29	11.75	38	52	38.2	-13.8	-524.4
Total Students 1290 Average -11						Total S	Students	1290		Average	-11	-9

ACS Final	Semester			Raw Score	Average				centile erage	Percentile	Difference
			Std.		CSŬ-	Std.					
(Exam name & year)	Given	U.S.	Dev.	N =	P	Dev.	N =	U.S.	CSU-P	Raw	Weighted
				istry (CHEI							
Biochemistry 2003 SB	Spring 04	35.4	9.3		29	5.7	4	50	26	-24	-96
Biochemistry 2003 SB	Spring 05	35.4	9.3		26	5.8	3	50	17	-33	-99
Biochemistry 2003 SB	Spring 06	35.4	9.3		31	1	3	50	34	-16	-48
Biochemistry 2007 SB	Spring 07	32.9	8.9		24	2.7	3	53	18	-35	-105
Biochemistry 2007 SB	Spring 09	32.9	8.9		30	4.1	7	53	39	-14	-98
Biochemistry 2007 SB	Spring 10	32.9	8.9	839	38.5	4.5	4	53	72	19	76
Biochemistry 2013 SB Biochemistry 2007 SB	Spring 12 Spring 13-	24.53	6.41		29.1	1.24	4	NA	NA		
Biochemistry 2007 SB	UG Spring 13-	32.9	8.9	839	28.7	4.4	3	53	36	-17	-51
Biochemistry 2012 SB	G Spring	32.9	8.9	839	36.8	7	5	53	62	9	45
Biochemistry 2012 SF	2014 Spring	32.9	8.9	839	34.1	8.14	10	53	55.3	2.3	23
·	2016	32.9	8.9	839	30.4	5.04	9	53	50.73	-2.27	-20.43
					Total S	Students	55		Average	-11	-7
									/	<u> </u>	<u>.</u>
			Physic	cal Chemis	stry						
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442	35.0		1	53	67	14	14
P-Chem Comp. (1995) RS	Fall 04	31.3	9.2	442				53		-53	0
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1					53		-53	0
				CHEM							
				322							
P-Chem Quant. (1995) RS	Spring 05	21.6	5.8		18.7	6.2	10	53	34	-19	-190
P-Chem Quant. (1995) RS	Spring 06	21.6	5.8		19.4	7.9	7	53	40	-13	-91
P-Chem Quant. (1995) RF	Fall 08	21.6	5.8		24.8	7.4	17	53	63	10	170
P-Chem Quant. (1995) RF	Fall 09	21.6	5.8		24.9	6.9	13	53	64	11	143
P-Chem Quant. (1995) RF	Fall 10	21.6	5.8		25.6	4.2	8	53	69	16	128
P-Chem Quant. (1995) RF	Fall 12	21.6	5.8		28.9	6.1	10	53	63	10	100
2006 P Chem (Quantum)	F13	29.2	7.8		29.3	6.1	12	51	49.7	-1.3	-15.6
Quantum Mechanics 2006 (RF)	Fall 2015	29.19	7.8	n/a	29.9	5.7	14	51	53.5	2.5	35

				CHEM 321								
P-Chem Thermo. (1996) RS	Fall 04	21.3	7.1	021	20.6	4.3	8	53	51	-2	-16	
P-Chem Thermo. (1996) RS	Fall 05	21.3	7.1		18.4	5.4	12	53	40	-13	-156	
P-Chem Thermo. (2006) RF	Spring 09	26.4	7.0		26.4	7.2	19	51	51	0	0	
P-Chem Thermo. (2006) RF	Spring 10	26.4	7.0		28.2	8.8	18	51	56	5	90	
P-Chem Thermo. (2006) RF	Spring 13	26.4	7.0		29.3	6.4	11	53	61.8	8.8	96.8	
2006 P Chem (Thermo) RF	S14 Spring	26.4	7.0		24.1	4.5	16	52	40.7	-11.3	-180.8	
2006 P Chem (Thermo) Thermodynamics 2013 (RF)	2015 Spring	26.4 27.48	7.0 <mark>6.5</mark>	n/a 378	26.7 30.31	7.6 <mark>8.74</mark>	14 16	51	51.4	0.4	5.6	*** No
Thermodynamics 2013 (RT)	2016	27.40	0.0	570	50.51	0.74	10					national norms for this exam yet only mean, median, an standard deviation values based on
					Total C	tudonto	107		Average	2	1	378 studer
					Total S	tudents	197		Average	-3	1	378 studer - T
		Inor	ganic Che	emistry (C			197		Average	-3	1	378 studer
	Spring 05	23.9	8	emistry (Cl 419	HEM 221 27.8	6.6	4	54	69	15	60	378 studer - -
Inorganic (2002) CC	Spring 12	23.9 28.4	8 8.1	419	HEM 221 27.8 31	6.6 0	4 2	54 52	69 66	15 14	60 28	378 studen
1991 Inorganic LW Inorganic (2002) CC Inorganic 2009 MC	Spring 12 F2013	23.9 28.4 31.79	8 8.1 8.95		HEM 221 27.8 31 20.6	6.6 0 7.98	4 2 18	54 52 51	69 66 11.8	15 14 -39.2	60 28 -705.6	378 studen
Inorganic (2002) CC	Spring 12	23.9 28.4	8 8.1	419	HEM 221 27.8 31	6.6 0	4 2	54 52	69 66	15 14	60 28	Trial test, n
Inorganic (2002) CC Inorganic 2009 MC Inorganic Chem. 2009 MC	Spring 12 F2013 Fall 2014	23.9 28.4 31.79	8 8.1 8.95	419	HEM 221 27.8 31 20.6 26.13	6.6 0 7.98 10.13	4 2 18 15	54 52 51	69 66 11.8	15 14 -39.2	60 28 -705.6	Trial test, r
Inorganic (2002) CC Inorganic 2009 MC Inorganic Chem. 2009 MC	Spring 12 F2013 Fall 2014	23.9 28.4 31.79 31.79	8 8.1 8.95 8.95	419	HEM 221 27.8 31 20.6 26.13 31.6	6.6 0 7.98 10.13 5.8	4 2 18 15	54 52 51	69 66 11.8	15 14 -39.2	60 28 -705.6	this exam

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016 Page 13 of 15

	Spring	04 70	0.05		00.0	7 5	_	54		00	400
Inorganic Chem 2009 MC	2015	31.79	8.95	400	39.8	7.5	5	51	77	26	130
Inorganic Chemistry 2009	Sp2016	31.79	8.95	482	41.7	6.7	3	51	87	36	108
					Total S	tudents	69		Average	8	-7
		Ana	lytical Cher	nistry (Cł	HEM 317)						
Analytical Chemistry 1994 DC	Fall 04	19.5	6.3	233	18.8	5.3	12	54	51	-3	-36
Analytical Chemistry 1994 DC	Fall 05	19.5	6.3	233	17.9	4.5	18	54	45	-9	-162
Analytical Chemistry 1994 CK	Fall 08	19.47	3.37	233	18.76	4.62	18	51	51	0	0
Analytical Chemistry 2007 CK	Fall 10	27.5	7.1	707	28.8	6.7	16	52	59	7	112
Analytical Chemistry 2007 KP	Fall 10	27.5	7.1	707	33.5	5.6	6	52	81	29	174
Analytical Chemistry 1994 CK	Fall 11	19.47	3.37	233	25.9	5	9	51	88	37	333
Analytical Chemistry 2007 CC	F2012	27.52	7.08	707	28	7.36	10	50	55	5	50
Analytical Chemistry 2007 CK	F 2013	27.52	7.08	707	28.11	6.21	19	52	56	4	76
Analytical Chemistry 2007 KP	Fall 2014	27.52	7.08		26.0	7.3	13	52	44	-8	-104
Analytical Chemistry 2007 CK	F 2015	27.52	7.08	707	25.8	6.5	18	52	42	-10	-180
					Total S	tudents	139		Average	5	2
			Instrumer	ntal Analy	sis						
Instrumental Analysis 2001 DL	Spring 05	32.8	7.8	237	29.8	6	6	47	37	-10	-60
Instrumental Analysis 2001 DL	Spring 06	32.8	7.8	237	29	11.8	13	47	36	-11	-143
Instrumental Analysis 2001 CK	Spring 07	32.8	7.8	237	30.7	8.2	11	47	38	-9	-99
Instrumental Analysis 2001 CK	Spring 09	32.8	7.8	237	29.2	7.8	15	47	36	-11	-165
Instrumental Analysis 2001 CK	Spring 10	32.8	7.8	237	34.3	7.7	12	47	56	9	108
Instrumental Analysis 2009 DL	Spring 11	24.1	6.6		28.7	8.5	10	51	78	27	270
Instrumental Analysis 2009 DL	Spring 13	24.1	6.6		29.8	5.2	8	51	82	31	248
Instrumental Analysis 2009 KP	Spring 12	24.12	6.6		26.1	6.87	7	51	59	8	57
Instrumental Methods 2009 CK	Spring 14	24.12	6.57		26.4	5.68	18	51	67	16	282
Instrumental Analysis 2009 KP	Spring 15	24.12	6.57		22.3	6.8	12	51	42	-9.5	-114
		01.10	0.57		00	4.1	21	EA	45	-6	-126
Instrumental Methods 2009 CK	Spring 16	24.12	6.57		23	4.1	21	51	40	-0	-120
Instrumental Methods 2009 CK	Spring 16	24.12	6.57			4.1	133	51	Average	-0	-120

MFAT Exam # Students	# Students Ov		Overall Physical		Organic		Inorganic		Analytical		National Mean	Biochem	Crit Think		
			current yr	cumulative	current yr	cumulative									
semester	number	Cumulative	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%tile	%-tile	%-tile	%-tile
S 1995	5	5	77	77	72	72	71	71	78	78	84	84	50		
S-1996	6	11	87	82	91	82	71	71	83	81	96	91	50		
S-1997	7	18	49	69	52	71	48	62	65	75	25	65	49		
AY 97-98	10	28	95	79	94	79	93	73	91	80	91	74	49		
AY 98-99	6	34	46	73	9	67	44	68	51	75	68	73	49		
AY 99-00	9	43	66	71	59	65	64	67	75	75	71	73	49		
AY 00-01	9	52	44	67	51	63	40	62	32	68	54	70	49		
AY 01-02	6	58	85	69	76	64	80	64	76	69	99	73	50		
AY 02-03	2	60	75	69	75	64	75	65	80	69	60	72	50		
AY 03-04	9	69	55	67	60	64	25	59	50	66	65	71	50		
AY 04-05	6	75	80	68	75	65	65	60	85	68	85	72	50		
AY 05-06	4	79	88	69	82	66	85	61	78	68	84	73	50		
AY 06-07	5	84	35	67	50	65	10	58	45	67	50	72	50	1	75
AY 07-08	11	95	55	66	80	66	40	56	70	67	60	70	50	5	80
AY 08-09	10	105	25	62	40	64	10	52	60	67	25	66	45	10	10
AY 09-10	14	119	60	62	80	66	35	50	65	67	65	66	50	45	55
AY 10-11	7	126	55	61	80	67	25	48	55	66	80	67	50	30	50
AY 11-12	5	131	77	62	88	67	59	49	82	66	62	66	46	32	79
AY 12-13	4	135	60	62	60	67	58	49	67	67	36	66	51	21*	60*
AY 13-14	4	139	96	63	98	68	87	50	99	67	98	66	46	46*	58*
AY 14-15	13	152	68	63	58	67	72	52	56	66	56	66	48	67	61
AY 15-16	10	162	61	63	65	67	59	52	56	66	60	65	53	NA	NA

*AY11-12 and 12-13 were combined to get a large enough N *AY12-13 and 13-14 were combined to get a large enough N