Colorado	Academic Program Assessment Report for AY 2021-2022	Program:Biology	
Pueblo,	Academic Program Assessment Report for AY 2021-2022 (Due: June 1, 2022)	Date report completed:5/24/22	

Completed by:_____Jeff Smith______

Assessment contributors (other faculty involved): _____Entire faculty of Biology___

Please describe the 2021-2022 assessment activities and follow-up for your program below. Please complete this form for <u>each undergraduate major</u>, <u>minor</u>, <u>certificate</u>, <u>and graduate program</u> (e.g., B.A., B.S., B.A.S, M.S.) in your department. Please copy any addenda (e.g., rubrics) and paste them in this document, save and submit it to both the Dean of your college/school and to the Executive Director for Assessment as an email attachment by June 1, 2022. You'll also find this form on the assessment website at <u>https://www.csupueblo.edu/assessment-and-student-learning/resources.html</u>. Thank you.

Brief statement of Program mission and goals:

I. Assessment of Student Learning Outcomes (SLOs) in this cycle. Including processes, results, and recommendations for improved student learning. Use Column H to describe improvements planned for 2019-2020 based on the assessment process.

A. Which of the	B. When	C. What	D. Who was	E. What is the	F. What were	G. What were	H. What changes/impro	ovements
program SLOs	was this	method was	assessed?	expected	the results of	the	to the program are plan	nned
were assessed	SLO <u>last</u>	used for	Please fully	proficiency	the	department's	based on this assessme	ent?
during this	reported	assessing the	describe the	level and how	assessment?	conclusions		
cycle? Please	on prior	SLO? Please	student	many or what	(Include the	about student		
include the	to this	include a copy	group(s) and	proportion of	proportion of	performance?		
outcome(s)	cycle?	of any rubrics	the number	students	students			
verbatim from	(semester	used in the	of students	should be at	meeting			
the assessment	and year)	assessment	or artifacts	that level?	proficiency.)			
plan.		process.	involved (N).					
SLO 1) Students	Spring	SLO 1.	17 students	Our goal is to	For the GRE	Students	The department initiate	ed a
will develop a	2021	Administer the	took the GRE	have 75% of	exam, BIO 171	improved on	core-curriculum evalua	tion and
broad-based		GRE to each	exam in Biol	our senior	students	average 12%	redesign this spring. M	ajor
knowledge of		class of First	171.	students	scored 30 +/-	from BIO 171	focus is on improving t	he cell
concepts and		Year Seminar		score at 70%	6%.	to BIO 493.	and molecular compon	ent of
terminology in		(BIOL 171) for		or higher on			the core curriculum. Th	is is the
molecular,		baseline	26 students	the GRE in the	For the GRE	BIO 493	section in which our stu	udents
cellular,		assessment.	took the GRE	BIOL 493	exam, BIO 493	students	most underperformed	in the
organismal,			exam in Biol	class,	students	scored 28%	MFAT exam this year:	
and ecological			493.		scored 42+/-	lower on the		
biology.		Administer the		and to have	7%.	GRE than the	Total score percentile	46
		GRE and MFAT		75% of our		departmental	Cell bio	37
		exam to each	37 students	senior	For the MFAT	target.	Molec/gen	32
		class of Senior	took the	students	exam, 49% of		Organism	57
		Seminar (BIOL	MFAT exam	score at or	BIO 493	With the	Pop bio	61
		493).	in BIOL 493.	above 50% of	students	MFAT, we		
				National	scored above	significantly		
				percentile on	the 50 th	missed our		
				the MFAT	percentile.	target of 75%		
				exam.		of students		
						above the 50 th		
						percentile, only		

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016, Revised Sept 2017, June 2018

						49% reached the 50 th percentile.	
SLO 2) Students will develop applied scientific skills though field and laboratory experience and data analysis.	This SLO has not been previously assessed	SLO 2. Assess the applied scientific skills of our students during their first year (College Biology I BIOL 181 Lab and College Biology II 182 Lab) and second year (Botany BIOL 201 Lab or Zoology BIOL 202 Lab) and compare the applied scientific skills of the same students during their junior or senior year in Microbiology (BIOL 301 Lab). Three rubrics are attached.	29 students in BIO 181L, 14 students in BIO 202L, 17-23 students in BIO 182L, involving 6 different instructors provided the baseline data. One instructor and 11 students provided the outcome data from BIO 301L.	Our goal is to have 80% of our junior or senior students show increased proficiency.	Baseline skills assessed were: 1. Focusing a microcope, 2. Making a graph, 3. Micropipetting, 4. Doing gel electrophoresis , and 5. Statistical analysis. 24% of students were excellent at these skills and 44% were proficient. The remaining 31% combined were developmental and ineffective. Outcome skills assessed in 301L were 1) Doing gel electrophoresis , 2) focusing a microscope, 3) Micropipetting, and 4) Isolating bacterial	Students improved their skills as assessed, but it was difficult to put a number on it without a linear design.	It was decided that for the next assessment cyle for this SLO, 1) more thought should be put into choosing the skill set to be assessed, so as to involve a greater repitoire of skills, 2) that better matching of skills assessed between baseline and outcome groups should be preconcieved, and 3) more courses and instructors should be involved in assessing skills for the outcome group. We also decided to alter the goal language to be that 80% of our outcome group would be excellent/proficient combined. We did meet that goal this year.

Created by IEC Jan 2011, Revised Oct 2011, Revised July 2012, Revised Apr 2016, Revised Sept 2017, June 2018

		colonies. 73%		
		of the students		
		were assessed		
		as excellent,		
		23% as		
		proficient, and		
		5% as		
		developmental.		

Comments on part I:

II. Closing the Loop. Describe at least one data-informed change to your curriculum during the 2021-2022 cycle. These are those that were based on, or implemented to address, the results of assessment from previous cycles.

A. What SLO(s) or other issues did you address in this cycle? Please include the outcome(s) verbatim from the assessment plan.	B. When was this SLO last assessed to generate the data which informed the change? Please indicate the semester and year.	C. What were the recommendations for change from the previous assessment column H and/or feedback?	D. How were the recommendations for change acted upon?	E. What were the results of the changes? If the changes were not effective, what are the next steps or the new recommendations?
SLO 1. Students will develop a broad-based knowledge and application of concepts, techniques and terminology in molecular, cellular, organismal, evolutionary and ecological biology.	Last year	The department discussed the result and determined that an improvement would be to increase our delivery of cell biology materials. A process to develop a curriculum map was initiated to more finely evalute where the gaps in instruction are.	The department has been constructing a fine-grained core-curriculum map, and is negotiating changes to the core curriculum based on that analysis.	The process is ongoing in the current summer and the department aims to make changes for the CAP Board to consider next fall.

Comments on part II:

SKILL	182L	301L	181L	201L/202L	Method of assessment
Focus an specimen on a microscope	\mathbf{V}	$\mathbf{\overline{N}}$	N	N	Practical
Make an agarose gel and carry out gel electrophoresis	M				Exam question
Measure the absorbance of a solution using an spectrophotometer	M				Practical
Measure uL volumes using different size micropipetters	M	M	M		Practical
Prepare a solution of a specific concentration from a stock solution	M	M			Exam question
Set up a serial dilution		\checkmark			Exam questions
Conduct basic statistics on data (e.g. Chi square or t test)				M	
Use Excel to generate a table or graph	\mathbf{N}	$\mathbf{\overline{A}}$	N	N	Assignment
Do a BLAST search of a protein or gene sequence	M	M			Assignment
Dissect a specimen					
Handle animals safely			M		
Collect and press plant samples					
Isolate bacterial colonies in an agar		V			Practical +
plate					unknowns
Use aseptic technique					Practical
Identify organisms using a taxonomic key/field guide		M			Microbiology unknowns

Specific outcomes: Amaya will add a second practical to her Microbiology course to assess spectrophotometry readiness and the use of micropipettes; she will also add exam questions with regards to making a solution from a specific concentration from a stock solution.

SEMESTER/YEAR:

COURSE:

INSTRUCTOR:

SKILL ASSESSED:

TOTAL NUMBER OF STUDENTS:

Excellent total:	Excellent percentage:	
Proficient total:	Proficient percentage:	
Developmental total:	Developmental percentage:	
Ineffective total:	Ineffective percentage:	

Excellent: requires no assistance or there are no errors

Proficient: requires minimal assistance or there are minor errors

Developmental: requires significant assistance or there are major errors

Ineffective: cannot do it

SEMESTER/YEAR:

MAJOR CONCENTRATION: (circle) Wildlife

Biomedical General

Cell/Mol Other

Thank you for participating in this survey. Please look at the following list of applied laboratory skills and, for each, <u>indicate with an X</u> whether you are comfortable doing it, whether you feel you could do this with help, whether you cannot do it, or whether you have never heard of this skill (<u>choose only one</u>!). Different students take different lab courses, so unless you have taken a lot of labs you might not have heard of some of these.

SKILL	CAN DO IT	CAN DO IT WITH HELP	CANNOT DO IT	HAVE NEVER HEARD OF IT	COMMENTS
Focus an specimen on					
a microscope					
Make an agarose gel					
and carry out gel					
electrophoresis					
Measure the					
absorbance of a					
solution using an					
spectrophotometer					
Measure uL volumes					
using different size micropipetters					
Prepare a solution of a					
specific concentration					
from a stock solution					
Conduct basic statistics					
on data (e.g. Chi					
square or t test)					
Use Excel to generate a					
table or graph					
Do a BLAST search of					
a protein or gene					
sequence					
Dissect a specimen					
Handle animals safely					
Collect and press plant					
samples					
Isolate bacterial					
colonies in an agar					
plate					
Use aseptic technique					
Identify organisms					
using a taxonomic					
key/field guide	<u> </u>			<u> </u>	